Circuitos Integrados Digitales
  Familia TTL
 
TTL (Transistor- Transistor Logic) o "Lógica Transistor a Transistor".

 



 
Es una familia lógica o lo que es lo mismo, una tecnología de construcción de circuitos electrónicos digitales. En los componentes fabricados con tecnología TTL los elementos de entrada y salida del dispositivo son transistores bipolares.

CARACTERISTICAS
  • Su tensión de alimentación característica se halla comprendida entre los 4,75v y los 5,25V (como se ve un rango muy estrecho).
  • Los niveles lógicos vienen definidos por el rango de tensión comprendida entre 0,2V y 0,8V para el estado L (bajo) y los 2,4V y Vcc para el estado H (alto).
  • La velocidad de transmisión entre los estados lógicos es su mejor base, si bien esta característica le hace aumentar su consumo siendo su mayor enemigo. Motivo por el cual han aparecido diferentes versiones de TTL como FAST, LS, S, etc. y últimamente los CMOS: HC, HCT y HCTLS. En algunos casos puede alcanzar poco más de los 250 MHz.
  • Las señales de salida TTL se degradan rápidamente si no se transmiten a través de circuitos adicionales de transmisión (no pueden viajar más de 2 m por cable sin graves pérdidas).
 
Los circuitos de tecnología TTL se prefijan normalmente con el número 74 (54 en las series militares e industriales). A continuación un código de una o varias cifras que representa la familia y posteriormente uno de 2 a 4 con el modelo del circuito.

La compuerta TTL fue una mejora introducida a la compuerta DTL. Los parámetros más importantes de las compuertas TTL son el retardo de propagación (ns), la disipación de potencia (mW), y el producto velocidad -potencia (pJ). El producto velocidad-potencia indica un retardo en la propagación con una disipación de potencia determinada.
Con respecto a las familias cabe distinguir:
  • TTL : Serie estándar
  • TTL-L (low power) : Serie de bajo consumo
  • TTL-S (schottky) : Serie rápida (usa diodos Schottky)
  • TTL-AS (advanced shottky) : Versión mejorada de la serie anterior
  • TTL-LS (low power shottky) : Combinación de las tecnologías L y S (es la familia más extendida)
  • TTL-ALS (advanced low power shottky) : Versión mejorada de la serie AS
  • TTL-F (FAST : fairchild advanced schottky)
  • TTL-AF (advanced FAST) : Versión mejorada de la serie F
  • TTL-HC (high speed C-MOS) : Realmente no se trata de tecnología TTL bipolar sino CMOS.
  • TTL-HCT (high speed C-MOS) : Serie HC dotada de niveles lógicos compatibles con TTL
  • TTL-G (GHz C-MOS) : GHz ( From Potato Semi)
 
TTL estandar

El circuito funciona con una alimentación única de + 5V, ± 5 % y es compatible con todos los circuitos de otras subfamilias TTL, así como también con la familia lógica DTL. Tiene un retraso típico de 10 ns, temperatura de trabajo de 0ºC a 70ºC, fan-out de 10, margen de ruido en estado 0 y en 1 de 400 mV, una potencia de disipación de 10 mW or puerta y una frecuencia maxima para los flip-flop de 35 MHz. Corresponde a la serie SN 54174 de Texas, conocida y utilizada mundialmente.

TTL de baja potencia " LPTTL, serie 54174 L)
Tiene un retraso de propagación típico de 33 ns, una potencia de consumo por puerta de 1 mW y una frecuencia máxima de 3 MHz de funcionamiento para los flip-flop. Su empleo se especializa en aplicaciones de bajo consumo y mínima disipación.

TTL de alta velocidad (HTTL, Serie SN 54 H174 H)

Los parámetros típicos de esta subfamilia son: retraso en la propagación por puerta de 6 ns, consumo de 22 mW por puerta y frecuencia operativa máxima de flip-flop de 50 MHz.

TTL Schottky" (STTL, Serie SN 54 S/74/S)

El circuito TTI, Schottky ha sido uno de los más recientes desarrollos y constituye el más rápido de las subfamilias TTL, aproximándose su velocidad a la familia lógica ECL. Se caracterizan por su rapidez, ya que no almacenan cargas y porque son muy sencillos de fabricar.
El circuito es similar al TTL de alta velocidad, pero la base de cada transistor está conectada al colector a través de un diodo de Schottky. El diodo actúa como desviador de] exceso de corriente de base cuando el transistor se activa, y guarda una carga almacenada, evitando la saturación de los transistores. La ausencia de-una carga almacenada reduce el tiempo del cambio del transistor y aumenta la velocidad del circuito. La subfamilia Schottky tiene una propagación típica de 3 ns, un consumo de 19 mW y una frecuencia máxima de flip-flop de 125 MHz.

TTL Schottky de baja potencia- (LSTTL, Serie 54 LS174 LS)

El circuito TTL Schottky de baja potencia es el Uiás reciente de la familia TTL y con él se ha intentado llegar a un compromiso entre la velocidad y la potencia consumida..
Tiene una propagación típica de 10 ns (igual que la TTL estándar) y un consumo por puerta de sólo 2 mW, con una frecuencia máxima de flip-flop de 35 MHz. 


-TECNOGIA TTL


La tecnología TTL se caracteriza por tener tres etapas, siendo la primera la que le nombre:
•             Etapa de entrada por emisor. Se utiliza un transistor multiemisor en lugar de la matriz de diodos de DTL.
•             Separador de fase. Es un transistor conectado en emisor común que produce en su colector y emisor señales en contrafase.
•             Driver. Está formada por varios transistores, separados en dos grupos. El primero va conectado al emisor del separador de fase y drenan la corriente para producir el nivel bajo a la salida. El segundo grupo va conectado al colector del divisor de fase y produce el nivel alto.
Esta configuración general varía ligeramente entre dispositivos de cada familia, principalmente la etapa de salida, que depende de si son búferes o no y si son de colector abierto, tres estados (ThreeState), etc. Mayores variaciones se encuentran entre las distintas familias: 74N, 74L y 74H difieren principalmente en el valor de las resistencias de polarización, pero la mayoría de los 74LS (y no 74S) carecen del transistor multiemisor característico de TTL. En su lugar llevan una matriz de diodos Schottky (como DTL). Esto les permite aceptar un margen más amplio de tensiones de entrada, hasta 15V en algunos dispositivos, para facilitar su interface con CMOS. También es bastante común, en circuitos conectados a buses, colocar un transistor pnp a la entrada de cada línea, para disminuir la corriente de entrada y así la cargar menos el bus. Existen dispositivos de interfase que integran impedancias de adaptación al bus para disminuir la reflexión u aumentar la velocidad.
Aplicaciones
Además de los circuitos LSI y MSI descritos aquí, las tecnologías LS y S también se han empleado en:
•             Microprocesadores, como el 8X300, de Signetics, la familia 2900 de AMD y otros.
•             Memorias RAM
•             Memorias PROM
•             PAL, Programmable Array Logic, consistente en una PROM que interconecta las entradas y cierto número de puertas lógicas.



 
 
 
  Hoy habia 17 visitantes (17 clics a subpáginas) ¡Aqui en esta página!  
 
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis